星期五 , 11月 15 2024
首页 / 人工智能 / AI / 跨年龄人脸识别技术,能够让拐卖儿童犯罪现象消失吗?

跨年龄人脸识别技术,能够让拐卖儿童犯罪现象消失吗?

现在的图像识别、人脸识别技术精细到什么程度?

当我们用肉眼去看一张照片时,尤其是在海关或者安检等需要比对人脸的场景下,人脑的识别能力其实是蛮有限的。

人的脸型在发育成长过程中会发生巨大变化,就算是人的大脑,这个方面的训练数据也是不够的。我们涉足这个领域属于无心插柳之举——当技术已经到了一定地步之后,我们想看看能不能做跨年龄的人脸识别,是从纯技术的角度出发来做的。

但是现在,我们发现它很有用,因为它在中国有一个特殊的应用,叫作寻找被拐儿童。

比如说十几年前丢失的一个小孩,很多年后,当你通过我们的官方或者政府寻找到这样的一个人之后,我们还是要确认到底是不是这个人,除了DNA之外最简单直观的方法就是通过人脸去比对。

从全球范围看,做这个技术的人并不多,虽然我们的技术目前还不是很成熟,但已经可以用来解决一部分问题了。

在寻找失踪儿童公益项目里,我们今年有六七个寻回案例,与家人失散的时间有的超过了七年,有的甚至长达十几年,所以这还是蛮有震撼力的。

跨年龄的人脸识别技术是靠什么实现的?

绝大多数算法都是叫数据驱动,有多少数据就有多少智能。也就是说,如果你的数据不够,你的算法的成功程度就不会很高。我们创建人脸识别的时候也是依赖这样一个算法。

无论是人或者算法机器,当他们去直观地看一张人脸图时,都不知道哪些地方是他成长以后会变的,眼角、鼻子、脸型等等都有可能。

尤其是脸型,从儿童到成年,这之间的变化可能会非常之大。在这一点上就是要追踪它的变化过程,不能用人去追踪,靠人手去标定的话,是不可能找到其中最关键的特征的,所以我们还是依赖了一些基本的算法。

我们收集数据都是靠自己的员工,靠他们贡献小时候照片来作为训练算法的数据集(是完全保密状态,他们才愿意拿出这些数据)

然后通过这些数据再去分析:到底绝大部分人的脸部会发生什么变化?脸是变长还是变瘦?眼角是变宽还是变窄了?

在这些变化中间,我们要寻找一种普适性,而普适性的寻找过程肯定也要依赖数据的提供。所以在这个过程中,算法还是挺有用的。

怎么看待人脸识别带来的数据安全隐患?

说实话安全隐患一定会是个问题。

从我对社会发展的了解和对数据监管的角度出发,或者说从科学的角度出发,我觉得像旧金山把人脸应用完全禁止的做法有点极端了。

人脸是一种非常简单的人体识别信息。相比于我们自己平时提供给各大机构、政府、商家的身份识别信息,人脸的信息量其实非常少。

信息量最多的是什么呢?是身份证。上面既有你的样子,也有你的年龄住址,你的身份证号码。这个才是最大的身份验证,也是最容易泄露的信息源。

我们也看到,社会上最不安全的信息载体不是人脸,反而是以实物卡片形式存在的身份证,它也是最容易被泄露的。不管是银行还是商家,如果监管稍微有一点漏洞,你就会发现自己的身份证信息被出卖了。

无论从大的社会层面还是从技术层面看,相比起归管我们的物理信息以及名字、ID这些后来被社会赋予的虚拟信息,归管人脸和生物信息都更加容易。

当前人脸识别技术最亟待攻破技术难点是什么?

现在整个技术的拓展,不是因为某一种物理现象或者是物理条件的约束,导致它不能够做得很好;绝大部分情况下,一个技术要不断地往上走,依赖于我们有没有一种能更好地模拟或去拟合物理世界的模型,比如我们能不能发展出像人脑一样的人工智能?

我们人脑识别一个人脸,可能只要千分之一秒甚至万分之一秒的时间。而且,不管它的清晰度、大小、角度如何,我们都能够知道这是不是我认识的人。

识别人脸在大脑里的功耗是极小的,但是在机器上做人脸识别,它的功耗至少是人脑的几十上百倍甚至上千倍,而且准确度、识别效果都有很大的提升空间。从这一点来说,技术进步是不会有止境的。

当然我们也可以通过算法去做一些人脑认知能力可能做不到的事情,比如暗光下的人脸识别、物体识别、景物识别等等,这也是一个好的研究范畴。

我们团队不久前就发表了一篇在极暗光下情况下把图像增强到肉眼可以看清的研究成果。

如何确保科技的应用范畴都是积极正面的?

我觉得这是一个叫科技伦理学的概念。以前是没有这个概念的。现在渐渐有政府、公司、社会学者提出这样一个伦理学的概念。有意思的事,我也参与建立了很多关注这个话题的委员会。

我的看法是,每一项技术的产生们都包括了正负面,科技永远是个中性的东西,它就像一个人的性别一样,你要把它分成男女,再让它有不同的功能之后,才有性别之分。

技术是中性的,如何让它偏向于合理的或者是好的应用,把那些不好的应用给摒弃掉,是我们应该去研究的。整个人类社会需要对它的使用范畴进行规范,就像原子能的应用,你不能用它制造具有杀伤性的武器,你不能用它毁灭人类。

《切尔诺贝利》剧照

我们在发展科技的过程中是一定需要伦理的。

当然,人工智能的伦理还没有生物学伦理那么严肃和重要。在生物学伦理上,比如任何的基因改造不能用于人,甚至说不能用于哺乳动物,这些伦理规则是非常严肃的,人工智能现在还没有到这个地步。

人工智能目前还达不到自主产生想法的程度,它还需要非常漫长的时间来发展。但是在应用层面,如何防止滥用人脸信息,防止数据或者算法被用在坏的场景里,防止不法分子利用技术生成虚假人脸在线上盗取银行信息等,肯定都需要法律法规来进行规范,这些在伦理学上也提出了非常大的挑战。

未来发展的方向有哪些?

第一个在医疗方向。从各个层面来说医疗板块关系到我们的健康与生存质量,所以我们希望尽快地切入到这个领域,帮助三四线城市、小乡镇等缺乏医疗资源的地区,让更多的普通人能够享受到医疗资源。

医疗产业很大,全世界的医疗支出量级高达几十万亿以上,所以在整个医疗领域,我们还是有很大的发展机会。

另一个重大场景就是自动驾驶,其产业价值,以及对于改善生活便利程度的想象空间,都是非常大的。

除此之外,我们还会切入到线下AR+零售,以及传统的工业生产领域。

现在有很多高危行业依然在使用传统人力,比如到桥梁、钢丝上去检查缺陷等。这些工种其实都应该逐渐被机器取代,把人类从这些高危工作中解脱出来。这些场景都是我们要重点去发展的。

关于 新知君

新知君
关注科技,自有新知

检查

Scaling Law终结,量化也不管用,AI大佬都在审视这篇论文

几十万人关注,一发表即被行业大 …

发表评论

邮箱地址不会被公开。 必填项已用*标注