星期五 , 11月 15 2024
首页 / 人工智能 / AI / 巨头们的AI“夺金”战:谷歌,微软还是阿里,腾讯?

巨头们的AI“夺金”战:谷歌,微软还是阿里,腾讯?

巨头们的AI“夺金”战:谷歌,微软还是阿里,腾讯?

 

在曾经的淘金热中,赚大钱的不仅是淘金者,还有那些给淘金者卖矿泉水的人。

AI淘金热潮中,企业和国家都在砸大价钱抢占市场:谷歌、亚马逊、微软和IBM在2016年砸下超过200亿美元来打这场硬仗。各个企业一边争先恐后地观察对手,确保能抢先意识到AI的生产力优势,一边把眼光瞄准初创公司。

中国在AI上投入了大量资金,而欧盟由于担心失去在中美的市场份额,也计划了将差不多220亿美元投资于AI。

但正如以往的淘金浪潮一样,最重要的是谁能真的找到“黄金”。

是那些少数敢于创新的巨头企业独占鳌头吗?活跃的初创企业能从中分得一杯羹吗?或者,提供淘金工具的人获利最大?究竟谁才会拔得头筹?以及,AI创造的价值到底在哪里?

这篇文章将目标对象划分为7种类型,并尝试用价值链模式来分析,这场AI浪潮中,最可能的赢家是谁:

  • 芯片制造商
  • 平台运营商,基础设施提供商
  • 模型和算法提供商
  • 企业解决方案提供商
  • 最佳垂直行业解决方案
  • AI企业级用户
  • 国家

注:以下名单中的企业均代表每一类别中的大型参与者,但并不具有全面性或预测性。

一个AI价值链的举例。其中的企业代表每一类的大型参与者,但不具有全面性或预测性。© Best Practice AI Ltd

AI芯片和硬件厂商?

尽管芯片的价格呈指数级下降趋势,但我们对于计算能力的需求却越来越高。AI和机器学习中庞大的数据集,加上数以万亿计的矢量和矩阵运算,都需要强大的计算力。因此,芯片的作用不可忽视。

过去两年,NVIDIA英伟达的股价上涨了1500%,这得益于其历来用在高速流畅的游戏界面上的图形处理单元(GPU)非常适合机器学习。

与此同时,Google最近推出了第二代Tensor Processing Units(TPU);微软正在构建自己的Brainwave AI机器学习芯片;像Graphcore这种筹资超过1.1亿美元的创业公司也正努力地进入市场。

而IBM、英特尔、高通和AMD等老牌芯片供应商也并没有停滞不前。有传言称,Facebook也正在组建自主AI芯片的设计团队。上周,Cambricon(寒武纪)宣布推出第一款云AI芯片,标志其成功迈入世界级芯片厂商之列。

究竟谁才是赢家?在第一场淘金浪潮中,Levi Strauss和Samuel Brannan并没有亲自去开采黄金,而是向矿工销售开采工具——手推车,帐篷,牛仔裤,镐和铲等等

显然,通过设计、制造,继而成为全球具有领导者地位的芯片厂商,所需花费的成本非常高,不仅需要雄厚的资金支持,还需要世界一流的芯片和软件工程师团队。因此,在芯片领域只有极少数的企业能成为赢家,就像上次淘金浪潮一样——只有提供价格最便宜、用途最广泛的淘金工具的那些人,赚得了大部分的钱。

AI基础架构和云平台供应商?

在云计算领域,AI的竞赛同样在进行。亚马逊早先就意识到,相比于购买,创业公司会更倾向于租用计算机和硬件,因此在2006年就推出了亚马逊网络服务(Amazon Web Services)。如今,AI如此庞大的计算力需求,使公司越来越倾向于通过基础设施即服务(Infrastructure as a Service)和平台即用服务(Platform as a Service)租用云端的硬件服务。

亚马逊是云服务领域的领导者,但行业的关注点更多集中在微软,IBM,谷歌和阿里巴巴。

对于其他科技巨头,竞争也从未停止。微软正在提供混合公有和私有的Azure云服务,据说后台拥有超过一百万台计算机。在过去的几个星期里,他们宣布,其Brainwave硬件解决方案能明显提升机器学习的速度,并通过这一方案将旗下的Bing搜索引擎性能提升了10倍。谷歌也正通过旗下的Google Cloud产品加快追赶步伐。同时我们还看到,阿里巴巴也开始占据了一定的全球份额。

大型云端玩家正在竞相确保能够满足AI带来的巨大需求

亚马逊、微软、谷歌和IBM将继续争夺这一领域的宝座。同时来自中国的的大量云服务企业正在崛起。在这场争夺战中,获胜者仍然会是行业巨头们。

最佳算法提供商?

如今,谷歌是世界上最大的AI企业,它拥有全世界最顶尖水平的AI人才,研发预算甚至超过了一些国家的GDP产值,并且坐拥来自数十亿用户的最佳数据集。AI技术被广泛地用在其搜索引擎、自动驾驶车辆、语音识别、智能推理、大规模搜索甚至药物发现和疾病研究等多个方向上。

难以置信的是,作为Google所有AI产品原动力的机器学习算法,TensorFlow及其软件竟是完全免费的。

TensorFlow是一个面向全球的开源软件项目。Google这样做的目的何在?答案正如Google Brain负责人Jeff Dean最近所说:世界上有2000万个机构可以利用机器学习来获益。

如果其中数以百万计的公司使用了这套最好的AI软件,那他们就需要大量的计算力,而谁能提供更好的计算服务呢?旗下的Google Cloud就是针对TensorFlow和相关AI服务的开发的最佳选择。

所以,一旦依赖上他们的软件和云平台,你就成为了一个粘性客户。难怪说这是场世界级的残酷竞争。而其他巨头们,如亚马逊、微软、IBM也都在提供着廉价或免费的AI软件服务。

同时,竞争不仅局限在机器学习算法,还包含了用于会话代理(conversational agents)和语音助手的认知算法,自然语言处理(NLP)和语义学,视觉和增强核心算法等多种算法。

在这些日益受到争议的领域中,一家叫Clarifai的创业公司为企业提供了先进的图像识别系统,以进行近似重复检测和视觉搜索。在过去三年里,该企业已筹集了近4000万美元。据估计,2016年至2025年期间,视觉相关算法和服务领域的市场收入将达到80亿美元。

而巨头们并没有停步于此。IBM正在提供Watson的产品和服务,拥有二十多个用于聊天机器人、视觉、语音、语义、知识管理和情感认知的API。这些API可以方便地嵌入企业软件中来直接创建支持AI应用程序。

同时,认知服务(cognitive service)API也无处不在。KDnuggets在这里列出了来自巨头和初创公司的50多种顶级认知服务。这些服务正作为“AI即服务(AI as a Service)”加入到云平台中以便调用。

最近,微软首席执行官Satya Nadella声称,有100万名开发人员正在使用云端的API,服务和工具来构建AI应用程序,同时近30万名开发人员正使用这些工具来开发聊天机器人。这样庞大的团队,让任何的创业公司都望而却步。

因此,这个领域的赢家很有可能再次落户在巨头中。

毕竟,巨头企业能聘请最优秀的研究人才和工程人才,能投入巨额资金,还能获得庞大的数据集。

而初创公司想要蓬勃发展,必须要有充分的资金支持,具有丰富的相关专利,雇佣有科研论文背景的领导性人才,还得获取高质量的数据集。除此之外,他们还需要在大企业的夹缝中生存,或者拥有业务全球化的能力。

关于初创公司失败的实例有不少,而真正存活下来的,都是能将业务全球化,或被巨头收购的。因此,即便初创公司尚未找到商业化的途径,若能致力于通过强大的研究团队来开发AI算法,也有被因人才而被巨头收购的希望。例如在2014年,谷歌花了4亿美元收购了DeepMind公司。这是一家来自于伦敦的公司,仅成立了两年,但却开发出了独特的强化机器学习算法。

最佳的企业解决方案提供商?

企业的软件市场被Salesforce、IBM、Oracle以及SAP等巨头垄断了。这些企业都意识到将AI整合到产品解决方案中的必要性。但是许多初创企业正加速占据企业服务市场,它们正在填补现任巨头们没能涉足的份额,甚至试图抢夺巨头们的立足之地。

我们分析了超过200个公司的案例:从客户管理到市场营销,从信息安全到智能应用,从人力资源到最近大火的认知机器人流程自动化(Robotic Process Automation,简称RPA)。企业解决方案市场相比以前开放得多,有各式各样的初创企业在以上这些领域里提供各种细分市场的解决方案。如今,在招聘市场就有超过200家AI驱动的企业,其中很多都是初创公司。

信息安全的领军企业DarkTrace以及RPA领跑者UiPath已经筹措到了一亿美元的资金。这些巨头们希望确保自己在生态系统中的不败之地,也正在投资有利于它们解决方案的创业公司。

Salesforce投资了Digital Genius(一家客户管理解决方案提供商)以及Unbable(一家提供翻译服务的企业)。高处不胜寒,巨头们往往面临着更大的压力。

例如SAP,正采取各种补救措施,想在云计算市场和AI市场中占据一席之地,在AI市场也是同样。同时,工具提供者们也都在尽力简化开发、部署以及管理企业AI服务的任务流程。

譬如机器学习训练就是一个非常“脏”的活,80%的时间可能都得用于数据清洗,也得花费过多的时间用于测试并校准所谓的超级参数。Pettum,一家位于美国匹兹堡的工具厂商,已经筹集了超过一亿美金用于加速和改善机器学习模型的部署过程。

企业AI解决方案将驱动客户服务及生产效率的提高

大多开展企业服务的初创企业都能健康的发展,前提是它们能够迅速推出能够切实满足企业需求、并且能够规模化的解决方案。但正如历史上软件的淘金热一般,在每个细分领域中只会出现少数几个赢家。

而这些细分领域的赢家们如果威胁性足够大,将有可能和该领域中的最棒的工具提供商一起被巨头收购。

最佳垂直行业解决方案供应商?

AI领域中正发生一场最佳垂直行业解决方案的比赛。有大量的AI初创公司在企业服务领域中提供解决方案,包括健康医疗、金融服务、农业、汽车、法律法规以及工业领域。

而且,许多创业公司都选择了极具挑战且野心勃勃的路线:通过直接对同样的客户提供服务来争夺主要企业方案提供者们的位置。

新AI行业解决方案对组织来说,可能是强心剂,也可能是毁灭者

显而易见,许多初创企业都提供了非常有价值的细分解决方案,并且在满足了以下条件之后,极有可能获得成功:

  • 大型的专属训练数据集;
  • 可以帮助发掘某领域潜在机会的专业知识和深度洞察力;
  • 懂AI技术的人才资源库;
  • 可以支持迅速增长的足够资金。

除此之外,那些表现还不错的初创企业一般都会在市场计划中使用企业商业语言,例如消费者、商业效率、ROI等。

譬如,ZestFinance已经筹措了三亿美元。这家公司通过给每个人提供合理透明的信用信息,从而帮助客户做出更明智的信贷决策。ZestFinance声称他们有世界上最好的数据科学家。

但谁知道呢?对于希望争夺现有企业玩家们生存之地的初创企业而言,一个充足的、持续不断的资金来源非常重要。例如Affirm公司,一家在销售阶段给消费者提供贷款的企业,已经筹集了超过7亿美元。对于这些公司迫在眉睫的事情,是在于建立够结实的“战壕”,从而保证它们的竞争优势。

这可以来源于数据网络效应,即更多的数据助力于更好的AI服务、AI产品,从而获得更多的收入和客户,促进数据的再增长。如此以往,飞轮效应就能不断积累。

哪家公司能真正获取AI价值?

企业有可能在行业中通过寻找新的厂商,使用AI解决方案来扩展业务范围,但是它们绝不会坐以待毙,让新人操控它们的消费者。同样,它们也不会坐等竞争者们使用AI技术获得市场优势。

现如今,大型企业们都创建了专门的投资团队,试图分一杯初创企业的羹,比如建立企业孵化器,甚至是成立自己的创业公司,以保证它们在AI驱动的创新中保有领导者地位。

通过改良的客户服务、提高的生产效率以及进步的产品与服务,企业们都身处其位、充分利用AI技术

相较于初创企业与小型企业,大型企业因为有了充足的数据资产得以占据优势地位,因为数据就是AI技术和机器学习的燃料。谁能比拥有了巨量理赔历史数据的保险公司更能充分利用AI呢?诸如了解消费者金融产品购买行为偏好的金融服务公司、拥有用户搜索数据的搜索引擎公司,也无人能出其右。

大型、小型企业都做好了准备,从AI技术中获取尽可能多的价值。事实上,Gartner研究预测,到了2022年,AI驱动的商业价值有望达到3.9万亿美元。

即使没有上千个,但至少上百个AI应用于组织的企业案例是存在的。企业可以借助AI改善他们的消费者体验、节约成本、降低价格、促进增长以及提供更好的产品和服务。

AI能够帮助大企业变得更大,当然,是以小公司的牺牲为代价。但是,这一切都是以它们的远见卓识、执行力、同时不做第一个吃螃蟹的忍耐力(即不要总是第一个尝试新技术驱动的项目)。

哪个国家将从AI获益最多?

国家也处在AI之战中。中国从不吝啬在AI上的投资,在培养技术人才及发展创业公司上投资巨大,同时国内相对宽松的政策环境,尤其是在数据隐私方面,也帮助中国在AI领域中获得优势地位,譬如信息安全和脸部识别领域。

最近,中国警方就通过AI技术在一场五万人的音乐会中识别出了目标人物。

大量进行脸部识别及图像识别的商汤科技有限公司表示,他们已筹到6亿美元,成为了全球最有价值的AI初创企业。中国指出,其国内的移动市场规模是美国的三倍,同时发生的移动交易是50倍——这是巨大的数据优势。专注于数据隐私政策的欧洲在AI的某些领域中,将把自己放在不利地位,即使欧盟正在讨论220亿美元AI投资的可能性。

英国、德国、法国以及日本最近都宣布了它们的国家AI战略。譬如,法国总统马可龙就说,法国政府接下来五年将会花费18.5亿美元支持建立AI生态系统,包括大型公共数据集的建立。

而Google的DeepMind以及三星已经承诺将成立新的巴黎实验室,富士通也正在扩张其在巴黎的研究中心。英国也宣布了14亿的AI投资,包括对1000个AI博士的资助。

问题在于,这么多国家都在对AI人才以及生态系统进行投资,谁会笑到最后?

AI的确会促进国家和企业的生产力和财富增长,但是当我们看到30%到40%的工作将被机器所取代时,我们不禁会想:未来的财富将如何分配?

经济学家会引用上百年前不断增长的自动化技术作为解释,但最终这场技术革命的结果是工作机会的净增长还是净减少?

在公众讨论中,人们常常引用机器学习之父Geoffrey Hinton的话:放射科医生将会失去工作,因为机器能从医疗照片中诊断疾病。

但同时,我们也应该把注意力转向中国,他们用AI技术成功帮助放射科医生每年从14亿CT扫描像中识别肺癌,满足了巨大需求。

结果并不是工作机会的丧失,而是更加高效、更加准确的诊断,最终市场将会扩张。

不可否认的是,未来可能会有一段剧变时期,掌控了AI技术和数据的企业和国家将笼络大部分价值,而技术欠缺的国家将不得不承受由AI自动化而带来的失业之痛。能从AI技术中获益的,将是拥有高水平技术的大型组织。

关于 声波

声波
发现不同的声音

检查

Scaling Law终结,量化也不管用,AI大佬都在审视这篇论文

几十万人关注,一发表即被行业大 …

发表评论

邮箱地址不会被公开。 必填项已用*标注